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A statically stable, gravitationally stratified compressible fluid containing a 
parallel shear flow is examined for stability against infinitesimal adiabatic 
perturbations. It is found that the Miles-Howard theorem of incompressible 
fluids may be generalized to this system, so that nz 2 iU'2 throughout the flow 
is a sufficient condition for stability. Here n2 is the Brunt-VaissaE frequency and 
U' is the vertical gradient of the flow speed. Howard's upper bound on the growth 
rate of an unstable mode also generalizes to this compressible system. 

1. Introduction 
The conditions for the stability of a gravitationally stratified incompressible 

inviscid fluid containing a parallel shear flow were obtained by Miles (1961) and 
Howard (196l),  thus verifying the general validity of results which emerged from 
earlier investigations of specific flow fields. It is then of interest to know whether 
the Miles-Howard theory carries over in a simple form to compressible fluids. 

Warren (1968) obtained a sufficient condition for stability of the compressible 
flow, but his expression is weaker than the expected generalization of the theory, 
and as he indicated, is not the optimum condition. 

In  fact we show in this paper that the stability of a compressible fluid against 
adiabatic perturbations may be treated in a manner entirely analogous to that 
used by Howard, with correspondingly simple results. ActualIy this procedure 
only establishes the existence or non-existence of complex eigenvalues, and is 
thus not the complete investigation of the stability problem. 

2. Equations of motion of the system 
Let (x, y, z )  form a right-handed set of co-ordinates with g the gravitational 

acceleration acting in the negative z direction. The unperturbed fluid is defined 
by a mass density p,(z), a pressure po(z)  and a parallel shear flow U,(z) with 
U&). k = 0. In the usual manner we define the sound speed C and the Brunt- 

where a prime represents differentiation with respect to z. 
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Ignoring heat conduction and viscous effects the equations of motion governing 
development of the system are: 

DU 
Dt 

the Euler equation 
P- = p g - v p ;  

the equation of continuity 
3 Dt +pv.u = 0; (2.4) 

and the equation of adiabatic pressure changes 

We express p ,  p ,  and U as sums of their unperturbed values and (infinitesimal) 
perturbations, and then make the usual linearization in the perturbation 
amplitudes. Assuming the form 

A(x , y , z , t )  = A(z)exp(i[ot-k.(x-by)]) (2.71 

with k real and 0 = W , + i W i  ((0% < 0) 

for each scalar component A of the perturbation fields produces a set of simul- 
ta,neous differential equations which may be reduced to  a single second-order 
linear homogeneous equation for one of the amplitudes A .  Accordingly we chose 
to obtain an equation in w(z), the z component of the fluid velocity. 

where 

Q = ( w -  k. U ~ ( Z ) )  (2.11) 

(cf. Warren 1968 and Howard 1961). 
For a statically stable fluid, n2 and r are both real and positive. Only the com- 

ponent of Uo(z) parallel to k enters (2.8), and for convenience we denote this 
component by U ( Z ) .  

We accept two forms of boundary conditions on w. Either the domain z 
terminates a t  a rigid parallel wall on which y must be zero, or outside some finite 
region of x the unperturbed fluid assumes constant values for C2 and U.  I n  the 
latter case the outgoing radiation conditions are applied, and it is found that 
rtq goes to  zero exponentially as 1x1 --f 00, a result which could no doubt be 
considerably generalized. 
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3. The stability conditions 

and ma.ke the substitution 

in (2.8) to  obtain 

As d has a non-zero imaginary part we may uniquely define tt branch of di 

q = Q-+$ (3.1) 

Multiplying (3.2) by $* and integrating over the domain of x gives, with 
minor rearrangement of terms, 

bx( [ @( 1 - ( d / k C ) 2 ) ]  -k2( 1 - (d/kcF) - 4k2!2( 1 - (d/kC)2)  
rQ$*$’ ’ rdZJ$’I2 (Q‘)2r1$12 

n2- d2 

The first and fourth terms integrate directly and are seen from the boundary 
conditions to  yield zero identically. Extracting the imaginary part of (3.3) 
from the remaining terms gives us the equation 

where R, is the real part of 51. Considering the first integral we remark that 

Hence the expression on the right-hand side of (3.5) is a non-negative real 
number p 2  (say), so that (3.4) may be rewritten as 
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As stated earlier, r and n2 are positive, so that if wi is non-zero it is necessary 
that somewhere within the domain of z, ( Q’/2k)2 is greater than n2. 

Thus a sufficient condition for stability of the system is that U‘2 < 4n2 through- 
out the flow. This condition is the obvious generalization of the Miles-Howard 
theorem, and since 

n2 = - s(P;/Po + g/C2), (3.9) 

reduces to their expression in the limit C2 -+ 03. 

4. The upper bound on the growth rate 
For wi non-zero, (3.8) gives the inequality 

or since 

and W? < [&U’2-n2]max, (4.3) 

which is the generalization of the bound obtained by Howard (1961). 

5. The semi-circle theorem 
If we return to  (2.8), multiplying it by q*, integrating over the domain x ,  

extracting the real and imaginary parts, and generally following precisely the 
procedure used by Howard (1961, $3), we derive Eckart’s semi-circle theorem 
(Eckart 1963). 

We have not, however, found the generalization of Rayleigh’s theorem, as 
following the method of Howard, $5, does not seem to lead to a useful result in 
this case. 
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